
Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

ECMAScript 3 or ES3:
 A Comprehensive Analysis of its Definition, History,
Features, and Legacy

1. Introduction: Understanding ECMAScript 3
ECMAScript, often abbreviated as ES, stands as a pivotal standard for scripting
languages, with JavaScript being its most widely recognized implementation.1 This
standard, meticulously documented by Ecma International in the ECMA-262
specification, ensures a level of interoperability across different web browsers and
other environments that support the language.1 The formal journey towards creating
this standard commenced in November 1996, driven by the burgeoning need for a
universal scripting language to enhance the interactivity of the World Wide Web.1 The
very term "ECMAScript" was conceived as a compromise, a neutral designation
agreed upon by Netscape Communications and Microsoft, whose early, yet often
competitive, involvement was instrumental in shaping the language.1 At its core, the
ECMAScript specification meticulously defines the language's syntax—the precise
rules governing how code is structured and written—and its semantics—the
underlying meaning and behavior dictated by that code.1 It is crucial to distinguish
between "ECMAScript," the standard itself, and "JavaScript," which, in the context of
web browsers, often encompasses not only the core language but also a rich
collection of Web APIs, such as the Document Object Model (DOM), that are essential
for creating dynamic and interactive web experiences.3

The standardization process of ECMAScript has evolved over time. Initially,
specifications were typically published every few years and were identified by major
version numbers, such as ECMAScript 3 (ES3) and ECMAScript 5 (ES5). However, with
the release of ECMAScript 6 (ES6), also known as ECMAScript 2015, the naming

1

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

convention shifted towards annual releases denoted by the year of publication, for
example, ES2017.3 These editions undergo a rigorous approval process by the ECMA
General Assembly on a yearly basis, reflecting a commitment to continuous
improvement and adaptation.3 The ongoing maintenance and updating of the
ECMAScript standard are the responsibility of dedicated specification editors, with
the most current versions of the ECMA-262 document readily accessible on the TC39
(Technical Committee 39) website.3 The initial impetus for standardizing JavaScript
can be traced back to Netscape's formal submission of the language to the European
Computer Manufacturers Association (ECMA) in an effort to foster a greater degree of
consistency and interoperability across the increasingly diverse landscape of web
browsers.1 The selection of the name ECMAScript was a strategic move to navigate
potential trademark issues associated with the widely recognized term "JavaScript".2
The primary goal of this standardization was to establish a common and unified
foundation for scripting languages, ensuring a more predictable and consistent
development environment across the various browser platforms.22 The international
recognition of the ECMAScript standard is further underscored by its adoption as
ISO/IEC 16262.4 Recognizing the need for the language in resource-constrained
environments, a specific subset of ES3 was also defined as the ECMAScript Compact
Profile (ES-CP or ECMA-327).14 To ensure that implementations of the ECMAScript
standard adhere to the specifications, the Test262 test suite was developed as a
comprehensive conformance test.1

The evolution of ECMAScript began with the first edition (ES1) in June 1997, followed
by the second edition (ES2) in June 1998, which primarily focused on editorial
revisions to achieve full alignment with the ISO standard.6 ECMAScript 3 (ES3), the
subject of this report, represents the third major iteration of the standard and was
formally adopted in December 1999.6 Building upon the foundations laid by its
predecessors, ES3 was based on the implementation of JavaScript 1.2 as found in
Netscape Navigator 4.0 and introduced several pivotal features, most notably

2

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

powerful regular expressions and significantly enhanced string handling capabilities.15
Following the release of ES3, there was a notable period of relative stability in the
ECMAScript standard, with the next major version, ES5, not appearing until 2009,
marking a decade of reliance on ES3.6 During this interim, an ambitious project to
develop ECMAScript 4 (ES4) was initiated but ultimately abandoned in 2008 due to
fundamental disagreements concerning the language's complexity and scope.6 ES5,
which eventually emerged, adopted a more incremental approach, prioritizing stability
and performance improvements while introducing key features such as strict mode
and native support for JSON.6 A more transformative phase in ECMAScript's history
began with the release of ECMAScript 6 (ES2015), which brought about substantial
changes and enhancements to the language, including the introduction of lexical
block scoping through let and const, arrow functions, class declarations, modules,
and promises.6 Since the advent of ES6, ECMAScript has transitioned to an annual
release cadence, with new versions being published every June, incorporating
features that have successfully navigated the rigorous multi-stage proposal process
managed by TC39.1

This report aims to provide a comprehensive and in-depth analysis of ECMAScript 3. It
will delve into the definition and historical context surrounding its development,
explore its key features and syntax specifications, compare and contrast it with
subsequent versions, examine its common use cases and applications, investigate its
limitations and drawbacks, research its current relevance in the ever-evolving
landscape of web development, and finally, consider the security implications
associated with its continued use.

2. The Genesis of ES3: Historical Context
The inception of JavaScript in May 1995 by Brendan Eich at Netscape
Communications marked the beginning of a transformative era for the World Wide
Web, with the language reportedly being developed in a mere ten days.1 Initially

3

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

codenamed Mocha, it was subsequently renamed LiveScript before settling on the
name JavaScript, a strategic marketing decision intended to capitalize on the
burgeoning popularity of Sun Microsystems' Java, despite the fundamental
differences between the two languages.6 The primary motivation behind JavaScript's
creation was to introduce dynamic capabilities to web browsers, thereby enriching the
predominantly static content of HTML and fostering more interactive user
experiences.1 However, the web development landscape became more complex with
Microsoft's introduction of its own JavaScript implementation, known as JScript, for its
Internet Explorer browser. This divergence in language implementations led to a
period often referred to as the "browser wars," where the inconsistencies between
Netscape's JavaScript and Microsoft's JScript created significant challenges for web
developers striving to ensure their websites functioned correctly across different
browsers.1 During the mid-1990s, Netscape Navigator held a dominant position in the
web browser market 12, but by the early 2000s, Microsoft's Internet Explorer had
gained significant traction and eventually surpassed Netscape in market share.10

Recognizing the growing need for a standardized scripting language to ensure a more
consistent web development experience, Netscape Communications took the initiative
by submitting JavaScript to the European Computer Manufacturers Association
(ECMA) in November 1996, thereby commencing the formal standardization process.1
Microsoft, while also maintaining its own JScript implementation, actively participated
in these standardization efforts. However, the early sessions were often marked by a
degree of tension and competing priorities between the two dominant players in the
browser market.1 The name "ECMAScript" itself emerged as a direct consequence of
these dynamics, serving as a politically neutral term that avoided direct association
with either Netscape's or Microsoft's proprietary technologies.1 Despite their
differences, both JavaScript and JScript provided the foundational technologies and
served as the primary source material upon which the ECMAScript standard was
ultimately built.1

4

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

To facilitate the development and ongoing maintenance of the ECMAScript standard,
ECMA International established Technical Committee 39 (TC39).1 This committee
operates based on the principle of consensus, ensuring that all participating member
organizations have a voice in the evolution of the language specification, and it retains
the authority to modify the standard as it deems necessary to meet the changing
needs of the web and software development.52 The process for introducing new
features into the ECMAScript standard involves a structured, multi-stage proposal
system, with each stage representing increasing levels of maturity and completeness
of the proposed feature.1 The first edition of the ECMAScript standard (ES1) was
officially released in June 1997, marking the initial formal step in standardizing the
language.1 The editor credited with the creation of the first edition was Guy L. Steele
Jr..23 Subsequent editions, including the second (ES2) and the third (ES3), were edited
by Mike Cowlishaw.23

ECMAScript 3, the focus of this analysis, was formally adopted by the ECMA General
Assembly in December 1999.14 The editorial work on the ES3 specification is primarily
attributed to Mike Cowlishaw, who built upon the foundational work of the earlier ES1
and ES2 standards.23 The content and features of the ES3 specification were largely
informed by the implementation of JavaScript 1.2 as it existed in Netscape Navigator
4.0, reflecting the dominant browser technology and scripting capabilities of that
era.23 The development of the ECMA-262 standard, which encompasses all editions of
ECMAScript including ES3, was a collaborative undertaking that involved numerous
individuals from a diverse range of organizations within the computing and technology
industries. Key contributors to this effort included prominent figures such as Brendan
Eich, the original inventor of JavaScript, Mike Cowlishaw, the editor of ES3, and many
other representatives from companies such as Netscape, Microsoft, IBM,
Hewlett-Packard, and Sun Microsystems.26

3. Dissecting ES3: Key Features and Syntax

5

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

ECMAScript 3 laid the groundwork for a robust scripting language with a set of
fundamental syntax elements. Variables were declared using the var keyword, and
their scope was limited to the function in which they were defined.1 The language
supported several primitive data types, including Number for representing numeric
values, String for sequences of characters, Boolean for logical true or false values,
Null to indicate the intentional absence of a value, and Undefined to signify that a
variable has been declared but not yet assigned a value.3 Additionally, the Object type
allowed for the creation of more complex data structures capable of holding
properties and methods.3 ES3 provided a comprehensive set of operators, including
arithmetic operators for performing mathematical calculations, assignment operators
for assigning values to variables, comparison operators for evaluating relationships
between values, logical operators for combining boolean expressions, and bitwise
operators for manipulating data at the level of individual bits.27 Control flow within ES3
scripts was managed through a variety of statements that enabled conditional
execution of code blocks using if, else, and switch statements, as well as the creation
of loops for repetitive tasks using for, while, and do-while statements.8

A significant addition in ECMAScript 3 was the introduction of regular expressions, a
powerful tool for pattern matching and text manipulation.6 These patterns could be
defined either as regular expression literals, enclosed in forward slashes (e.g., /abc/),
or by using the RegExp constructor (e.g., new RegExp("abc")).81 ES3 regular
expressions supported a wide range of syntax for matching specific characters,
including character sets, quantifiers to specify the number of occurrences, and
anchors to define positions within the string.27 Methods such as test(), which returned
a boolean indicating if the pattern was found in a string, and exec(), which returned an
array with the match details or null if no match was found, provided the means to
utilize these patterns in scripts.8

For handling runtime errors, ES3 introduced the try...catch statement.6 Code that
might potentially throw an error could be placed within a try block. If an error

6

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

occurred during the execution of this code, control would immediately pass to the
catch block, which contained instructions on how to handle the error.8 The catch block
received an error object, providing information about the type and nature of the
error.60 ES3 also supported an optional finally block, which could follow the try and
catch blocks. The code within the finally block was guaranteed to execute regardless
of whether an error occurred or was caught, making it suitable for cleanup tasks.60

ECMAScript 3 provided support for object-oriented programming through a
prototype-based inheritance model.1 In this paradigm, objects could inherit properties
and methods from other objects, known as prototypes, forming a chain of inheritance.
The this keyword in ES3 referred to the object in which the current code was being
executed, often the object that owned the method being called.98 The specific value
of this was dynamically determined based on how the function was invoked.98
Although ES3 lacked the class syntax introduced in later versions, developers could
simulate classes using constructor functions and by manipulating the prototype
property of these functions.73

Arrays in ES3 were supported as ordered collections capable of holding values of any
type.1 Basic array operations included accessing elements by their index and
determining the size of the array using the length property.19 Functions in ES3 were
treated as first-class citizens, allowing them to be assigned to variables, passed as
arguments to other functions, and returned as values.1 ES3 supported both function
declarations and function expressions, providing flexibility in how functions could be
defined and used.110 The concept of closures was also part of ES3, enabling functions
to retain access to variables from their outer scope even after the outer function had
completed its execution.1

4. ES3 Compared: Evolution to ES5 and ES6
ECMAScript 5, released in 2009, introduced several key features and improvements

7

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

over ES3.6 One of the most significant additions was "strict mode," a directive that
enforced stricter parsing and error handling, leading to more robust and maintainable
code. ES5 also brought native support for JSON (JavaScript Object Notation), a
lightweight data-interchange format, with built-in methods for parsing JSON strings
and converting JavaScript objects to JSON. The capabilities for working with arrays
were significantly enhanced with the introduction of methods like forEach, map, filter,
reduce, every, some, indexOf, lastIndexOf, and isArray, providing more functional and
concise ways to manipulate array data. ES5 also added the String.trim() method for
easily removing whitespace from the beginning and end of strings. Furthermore, ES5
introduced the ability to define getters and setters for object properties, allowing for
more controlled access and modification of object attributes. Finally, ES5 provided
more fine-grained control over the properties of objects through new methods in the
Object namespace, such as defineProperty, create, and keys.

ECMAScript 6 (ES2015), released in 2015, represented a monumental leap forward in
the evolution of JavaScript.1 It introduced block-scoped variables using let and const,
which helped to mitigate the issues associated with var's function scope. Arrow
functions provided a more concise syntax for writing functions and also addressed
some of the complexities of the this keyword. ES6 brought a more structured
approach to object-oriented programming with the introduction of classes, although
JavaScript's underlying prototype-based inheritance model remained. For better code
organization and modularity, ES6 introduced a native module system with the import
and export keywords. Handling asynchronous operations was greatly improved with
the introduction of Promises, offering a more elegant alternative to callbacks. ES6 also
included template literals for easier string interpolation, destructuring for convenient
value extraction from arrays and objects, default and rest parameters for functions,
the spread operator for expanding iterables, iterators and the for...of loop for iterating
over various data structures, generators for simplifying the creation of iterators, new
collection types like Map and Set, and symbols for creating unique object properties.

8

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

Feature ES3 (1999) ES5 (2009) ES6 (2015)

Strict Mode No Yes Yes

JSON Support No Yes Yes

Array Methods
(forEach, map, filter,
reduce, etc.)

No Yes Yes

String.trim() No Yes Yes

Getters/Setters No Yes Yes

Object Property
Control

Limited Yes Yes

let and const No No Yes

Arrow Functions No No Yes

Classes No No Yes

Modules No No Yes

Promises No No Yes

Template Literals No No Yes

9

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

Destructuring No No Yes

Maps and Sets No No Yes

Symbols No No Yes

5. Applications in Practice: Use Cases of ES3
ECMAScript 3 served as the foundational scripting language for client-side web
development for a significant period, powering the interactivity of web pages across a
wide range of browsers prevalent in the early to mid-2000s, including Internet
Explorer, Netscape Navigator, and the initial versions of Firefox, Chrome, and Safari.1 It
played a crucial role in enabling Dynamic HTML (DHTML) techniques, allowing
developers to dynamically modify the content and styling of web pages in response to
user interactions and other events.144 The Asynchronous JavaScript and XML (AJAX)
methodology, which significantly enhanced the responsiveness of web applications,
heavily relied on ES3's capabilities, particularly the XMLHttpRequest object, to
facilitate background communication with servers and update specific parts of a web
page without requiring a full reload.34 ES3 was also extensively used for implementing
fundamental client-side functionalities such as form validation to ensure the integrity
of user input before submission, creating basic animations to improve user
engagement, and handling a variety of user interactions, including mouse clicks,
keyboard inputs, and form submissions.21

While the widespread use of JavaScript for server-side scripting gained prominence
with the advent of Node.js (which utilizes more modern JavaScript engines), there
were earlier server-side JavaScript environments that likely leveraged ES3 interpreters
or similar technologies.1 Notably, Google Apps Script, in its initial iterations, was based
on the ECMA-262 3rd Edition, providing a specific example of ES3's application in a

10

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

non-browser, server-like environment for automating tasks and extending the
functionality of Google's suite of productivity applications.149

During the ES3 era, a number of significant web development frameworks and
libraries emerged to address the challenges of cross-browser compatibility and to
streamline common development tasks. Prominent examples include libraries such as
jQuery, Prototype, Dojo Toolkit, and Mootools. These tools, built upon the foundation
of ES3, offered developers abstractions that helped to normalize the inconsistencies
found across different web browsers' JavaScript implementations, especially in areas
like Document Object Model (DOM) manipulation and event handling.6 While
AngularJS gained significant traction later, its initial versions were built upon the
principles and capabilities provided by ES3 and ES5, further illustrating the evolving
landscape of JavaScript frameworks.150 Moreover, Dynamic HTML (DHTML) itself can
be considered an early form of "framework" or a collection of techniques that heavily
utilized ES3 to create more interactive and dynamic web experiences.144

Beyond the realm of web development, the ECMAScript standard, including the core
features of ES3, found applications in various other domains. The existence of the
ECMAScript Compact Profile (ES-CP), a specification specifically designed as a strict
subset of ES3 for use in resource-constrained devices, suggests its potential
application in embedded systems and other environments where computational
resources were limited.14 Additionally, ActionScript, the scripting language employed
by Adobe Flash for creating interactive multimedia content, and JScript, Microsoft's
implementation of ECMAScript used in environments such as Windows Script Host for
system scripting and automation, were both based on the ECMAScript standard,
including the features defined in ES3, and were utilized in numerous non-web
contexts.1 Furthermore, ECMAScript for XML (E4X) was introduced as an extension to
ECMAScript, providing specific functionalities for working with and manipulating XML
documents, indicating its potential use in applications that involved XML data

11

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

processing.4

6. The Limitations of ES3: Why Modern JavaScript Evolved
ECMAScript 3, while a significant step in standardizing JavaScript, possessed several
limitations in its language features and syntax that increasingly hindered the
development of more complex and sophisticated web applications. One of the
primary shortcomings was the function-level scope of variables declared using the
var keyword. This scoping behavior often led to issues such as variable hoisting,
where variables could be accessed before their actual declaration in the code, and
the unintentional creation of global variables, which could result in naming conflicts
and make codebases harder to manage and debug, particularly in larger projects.1
Furthermore, ES3 lacked the more concise and structured syntax for object creation
and manipulation that was introduced in subsequent versions of the standard.
Features like classes, enhanced object literals providing shorthand for method and
property definitions, and destructuring for easily extracting values from arrays and
objects were absent, making object-oriented programming more verbose and less
intuitive.1

Asynchronous programming in ES3 was predominantly handled using callbacks, a
pattern that could quickly lead to deeply nested and convoluted code structures,
often referred to as "callback hell," especially when dealing with multiple sequential or
parallel asynchronous operations. This approach made it significantly harder to
manage the flow of asynchronous logic and handle errors effectively compared to the
more structured and readable solutions offered by Promises and the async/await
syntax introduced in later versions.23 ES3 also did not provide built-in support for more
advanced and commonly used data structures like Maps and Sets, which were
introduced in ES6 and offered more efficient and convenient ways to handle key-value
pairs and collections of unique values compared to the traditional use of plain
JavaScript objects for these purposes.1 Furthermore, the capabilities for string

12

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

manipulation in ES3 were relatively limited compared to the more extensive set of
methods and features that were added in subsequent ECMAScript standards.6 Finally,
ES3 lacked a native module system, which made it increasingly challenging to
organize code into reusable and encapsulated components and to manage
dependencies effectively as web applications grew in size and complexity.1

Despite the standardization of ES3, achieving consistent cross-browser compatibility
remained a notable challenge for web developers. Subtle variations in how different
browser engines implemented the ES3 specification could lead to inconsistencies in
the behavior and rendering of web applications across various browsers. This often
required developers to resort to writing browser-specific code or relying on external
JavaScript libraries, such as jQuery, that aimed to abstract away these inconsistencies
and provide a more uniform development experience.6 During the "browser wars" era,
the intense competition between Netscape and Microsoft sometimes led to browser
vendors prioritizing proprietary features over strict adherence to web standards,
including ECMAScript, which further complicated the issue of cross-browser
compatibility.10

JavaScript engines have undergone significant evolution since the ES3 era, with
modern engines incorporating sophisticated performance optimizations like
Just-In-Time (JIT) compilation.3 These advancements were either not as prevalent or
as refined in the engines that primarily supported ES3. Moreover, ES3 lacked certain
language features that contribute to improved performance in modern JavaScript,
such as Typed Arrays for efficient handling of binary data.1

Finally, ES3 lacked native support for many of the contemporary web development
paradigms and APIs that are now considered standard practice. For instance,
component-based architectures, popularized by frameworks like React, Angular, and
Vue.js, heavily leverage features introduced in ES6 and later, such as classes, modules,
and template literals.32 The absence of built-in support for numerous modern Web

13

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

APIs further limited the capabilities of ES3 for creating rich and interactive web
experiences.

7. ES3 in the Present: Relevance and Usage Today
Despite the significant advancements in ECMAScript since its release, ES3 still
maintains a degree of relevance in specific contexts. Large enterprise-level
applications, particularly those with long development cycles and strict requirements
for backward compatibility, often with older web browsers like Internet Explorer 8, may
still have substantial portions of their codebase written in ES3.141 Additionally, certain
specialized environments, such as some embedded systems or proprietary software
platforms with limited computational resources, might still rely on JavaScript
interpreters that primarily support the ES3 standard or its compact profile.4
Furthermore, legacy web applications that have not undergone significant
modernization efforts might still contain considerable amounts of ES3 code.141

In scenarios where maintaining compatibility with extremely outdated web browsers,
such as Internet Explorer 6, 7, or 8, is a critical requirement, developers might still find
it necessary to target ES3 or to transpile modern JavaScript code to an
ES3-compatible level.112 Similarly, specific embedded systems or legacy platforms with
JavaScript engines that only support the ES3 standard might necessitate writing code
that adheres to its specifications.4

When working with existing ES3 code or when the need arises to target ES3
environments, several strategies can be employed. Modern JavaScript code can be
transpiled to ES3 using tools like Babel, which converts newer syntax and features into
equivalent ES3 code.1 Polyfills, which are code snippets that provide implementations
of newer JavaScript features in older environments, can also be used to bring
functionalities from ES5 and later to ES3, although this might come with performance
considerations.1 In some cases, developers might opt to use JavaScript libraries that

14

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

were specifically designed to be compatible with ES3 to ensure broader support.141 For
long-term maintainability and to leverage the advantages of more modern JavaScript
features, gradually migrating ES3 codebases to newer ECMAScript versions is often
the most recommended approach.58

8. Navigating the Past: Security Considerations with ES3
Given its age, JavaScript engines that primarily support ES3 may contain known
security vulnerabilities that have been addressed in more recent versions.6 ES3
inherently lacks some of the security features and browser security mechanisms
introduced in later ECMAScript standards to mitigate common web security threats.
Furthermore, codebases that still rely on ES3 may also depend on older versions of
JavaScript libraries and frameworks, which themselves might contain security
vulnerabilities that have since been discovered and patched in newer releases.

When maintaining or interacting with ES3 code, it is crucial to keep the JavaScript
engine (browser or runtime environment) as up-to-date as possible within the
system's constraints, as newer versions often include patches for known
vulnerabilities. Any third-party libraries or frameworks used in the ES3 codebase
should be thoroughly vetted for known security flaws and updated to the latest
available versions if feasible. Implementing robust server-side security measures is
also essential to compensate for potential client-side vulnerabilities that might exist in
ES3 code. In certain scenarios, isolating ES3 code within sandboxed environments can
help limit the potential impact of security breaches.

For applications where security is a paramount concern, the most effective long-term
strategy is to prioritize the modernization or complete replacement of ES3 codebases
with versions that adhere to more recent ECMAScript standards, such as ES5 or later.
These newer standards often include important security enhancements and are
supported by actively maintained JavaScript engines that receive regular security

15

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

updates. If a full upgrade is not immediately feasible, rewriting critical,
security-sensitive portions of the code in a more modern JavaScript version can be a
viable interim step.

9. Conclusion: Reflecting on ES3's Legacy
ECMAScript 3, adopted in 1999, represents a significant milestone in the
standardization of JavaScript, providing core language features that powered the
early interactive web. Its introduction of regular expressions and structured error
handling marked a substantial advancement over previous versions. While ES3 served
as a stable and widely used standard for nearly a decade, the evolution of web
development and the increasing complexity of web applications necessitated further
advancements in the language. Subsequent versions, ES5 and ES6, introduced a
wealth of new features and syntax improvements that addressed many of the
limitations of ES3, leading to more robust, efficient, and developer-friendly code.

ES3's legacy persists today primarily in older systems, particularly in enterprise
environments with strict backward compatibility requirements, and in specific
resource-constrained or embedded systems. Working with ES3 in the present often
involves strategies like transpiling and polyfilling to bridge the gap with modern
JavaScript. However, the age of the standard also raises security considerations,
highlighting the importance of careful maintenance and a potential need for
modernization.

In conclusion, ECMAScript 3 played a crucial role in the history of the web, providing a
foundational scripting language that enabled early web interactivity. While modern
JavaScript has evolved significantly, understanding ES3 offers valuable context into
the language's origins and the driving forces behind its continued development.

Works cited

16

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

1. ECMAScript - Wikipedia, accessed May 2, 2025,
https://en.wikipedia.org/wiki/ECMAScript

2. What is ECMAScript? - Stack Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/4269150/what-is-ecmascript

3. JavaScript technologies overview - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/JavaScript_te
chnologies_overview

4. ECMAScript Language (ECMA-262), including JavaScript - Library of Congress,
accessed May 2, 2025,
https://www.loc.gov/preservation/digital/formats/fdd/fdd000443.shtml

5. Ecmascript Evolution - priyanka chaudhari's, accessed May 2, 2025,
https://priyankachaudhari.hashnode.dev/history-ecmascriptjavascript

6. History of ECMAScript | Ben Ilegbodu, accessed May 2, 2025,
https://www.benmvp.com/blog/learning-es6-history-of-ecmascript/

7. 5 History and evolution of JavaScript - Exploring JS, accessed May 2, 2025,
https://exploringjs.com/js/book/ch_history.html

8. A Brief History of ECMAScript Versions in JavaScript - Web Reference, accessed
May 2, 2025, https://webreference.com/javascript/basics/versions/

9. ECMAScript - QPan, accessed May 2, 2025,
https://www.quanpan302.com/sd/ECMAScript/

10. What is ECMAScript? What is it to do with JavaScript? - ExplainThis, accessed May
2, 2025, https://www.explainthis.io/en/swe/ECMAScript

11. Chapter 5. Standardization: ECMAScript - Exploring JS, accessed May 2, 2025,
https://exploringjs.com/es5/ch05.html

12. ECMAScript, TC39, and the History of JavaScript - ui.dev, accessed May 2, 2025,
https://ui.dev/ecmascript

13. The History of JavaScript: A Journey from Netscape to Frameworks and Libraries,
accessed May 2, 2025,
https://www.techaheadcorp.com/knowledge-center/history-of-javascript/

14. Standard ECMA-327 ECMAScript 3 Edition Compact Profile, accessed May 2,
2025,
https://www.ecma-international.org/wp-content/uploads/ECMA-327_1st_edition_j
une_2001.pdf

15. ECMAScript® 2017 Language Specification - TC39, accessed May 2, 2025,
17

https://en.wikipedia.org/wiki/ECMAScript
https://stackoverflow.com/questions/4269150/what-is-ecmascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/JavaScript_technologies_overview
https://www.loc.gov/preservation/digital/formats/fdd/fdd000443.shtml
https://priyankachaudhari.hashnode.dev/history-ecmascriptjavascript
https://www.benmvp.com/blog/learning-es6-history-of-ecmascript/
https://exploringjs.com/js/book/ch_history.html
https://webreference.com/javascript/basics/versions/
https://www.quanpan302.com/sd/ECMAScript/
https://www.explainthis.io/en/swe/ECMAScript
https://exploringjs.com/es5/ch05.html
https://ui.dev/ecmascript
https://www.techaheadcorp.com/knowledge-center/history-of-javascript/
https://www.ecma-international.org/wp-content/uploads/ECMA-327_1st_edition_june_2001.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-327_1st_edition_june_2001.pdf

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://tc39.es/ecma262/2017/
16. Ecma 262 - ECMAScript® 2026 Language Specification, accessed May 2, 2025,

https://tc39.es/ecma262/multipage/
17. ECMAScript® 2016 Language Specification - TC39, accessed May 2, 2025,

https://tc39.es/ecma262/2016/
18. Understanding the ECMAScript spec, part 3 - V8.Dev, accessed May 2, 2025,

https://v8.dev/blog/understanding-ecmascript-part-3
19. The Evolution of JavaScript: From Netscape to ECMAScript - Codedamn,

accessed May 2, 2025,
https://codedamn.com/news/javascript/evolution-of-javascript-netscape-ecmasc
ript

20. A Brief History of JavaScript - DEV Community, accessed May 2, 2025,
https://dev.to/dboatengx/history-of-javascript-how-it-all-began-92a

21. History of JavaScript - read our article to find out! - SoftTeco, accessed May 2,
2025, https://softteco.com/blog/history-of-javascript

22. The Evolution of JavaScript: A Journey Through Its History - MVJ College of
Engineering, accessed May 2, 2025,
https://mvjce.edu.in/blog/evolution-of-javascript/

23. ECMAScript version history - Wikipedia, accessed May 2, 2025,
https://en.wikipedia.org/wiki/ECMAScript_version_history

24. From Research Prototypes to Continuous Integration: Guiding the Design and
Implementation of JavaScript | SIGPLAN Blog, accessed May 2, 2025,
https://blog.sigplan.org/2023/01/12/from-research-prototypes-to-continuous-inte
gration-guiding-the-design-and-implementation-of-javascript/

25. ECMA-262 - Ecma International, accessed May 2, 2025,
https://ecma-international.org/publications-and-standards/standards/ecma-262/

26. Edition 3 Final ECMAScript Language Specification - Mozilla, accessed May 2,
2025, https://www-archive.mozilla.org/js/language/e262-3.pdf

27. ECMA-262, 3rd edition, December 1999, accessed May 2, 2025,
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_dece
mber_1999.pdf

28. Brief History of JavaScript - roadmap.sh, accessed May 2, 2025,
https://roadmap.sh/guides/history-of-javascript

29. The Evolutionary Journey: A Brief History of ECMAScript, accessed May 2, 2025,
18

https://tc39.es/ecma262/2017/
https://tc39.es/ecma262/multipage/
https://tc39.es/ecma262/2016/
https://v8.dev/blog/understanding-ecmascript-part-3
https://codedamn.com/news/javascript/evolution-of-javascript-netscape-ecmascript
https://codedamn.com/news/javascript/evolution-of-javascript-netscape-ecmascript
https://dev.to/dboatengx/history-of-javascript-how-it-all-began-92a
https://softteco.com/blog/history-of-javascript
https://mvjce.edu.in/blog/evolution-of-javascript/
https://en.wikipedia.org/wiki/ECMAScript_version_history
https://blog.sigplan.org/2023/01/12/from-research-prototypes-to-continuous-integration-guiding-the-design-and-implementation-of-javascript/
https://blog.sigplan.org/2023/01/12/from-research-prototypes-to-continuous-integration-guiding-the-design-and-implementation-of-javascript/
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://www-archive.mozilla.org/js/language/e262-3.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://roadmap.sh/guides/history-of-javascript

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://www.mehregansmart.com/en/content30.html
30. JavaScript / ECMAScript Versions... - DEV Community, accessed May 2, 2025,

https://dev.to/avinashtechlvr/javascript-ecmascript-versions-m9n
31. 1995: The Birth of JavaScript | Cybercultural, accessed May 2, 2025,

https://cybercultural.com/p/1995-the-birth-of-javascript/
32. A Brief History of JavaScript Frameworks - Primal Skill Programming, accessed

May 2, 2025, https://primalskill.blog/a-brief-history-of-javascript-frameworks
33. The History of JavaScript: A Journey Through Time - By SW Habitation, accessed

May 2, 2025, https://www.swhabitation.com/story/history-of-javascript
34. History of JavaScript on a Timeline - RisingStack Engineering, accessed May 2,

2025, https://blog.risingstack.com/history-of-javascript-on-a-timeline/
35. A Brief History of JavaScript - Auth0, accessed May 2, 2025,

https://auth0.com/blog/a-brief-history-of-javascript/
36. The Weird History of JavaScript - DEV Community, accessed May 2, 2025,

https://dev.to/codediodeio/the-weird-history-of-javascript-2bnb
37. 25 Years of JavaScript and Java! | Okta Developer, accessed May 2, 2025,

https://developer.okta.com/blog/2020/12/04/25-years-javascript-java
38. Brendan Eich - Wikipedia, accessed May 2, 2025,

https://en.wikipedia.org/wiki/Brendan_Eich
39. The History of JavaScript | Fireship.io, accessed May 2, 2025,

https://fireship.io/courses/javascript/intro-history/
40. Brendan Eich: The TRUE History Of The Javascript Programming Language -

YouTube, accessed May 2, 2025,
https://www.youtube.com/watch?v=_UjYWgM8guY

41. Animation: The Rise and Fall of Popular Web Browsers Since 1994 - Visual
Capitalist, accessed May 2, 2025,
https://www.visualcapitalist.com/cp/the-rise-and-fall-of-popular-web-browsers-
since-1994/

42. Animation: Internet Browser Market Share (1996-2019) - Visual Capitalist,
accessed May 2, 2025,
https://www.visualcapitalist.com/internet-browser-market-share/

43. History of the web browser - Wikipedia, accessed May 2, 2025,
https://en.wikipedia.org/wiki/History_of_the_web_browser

44. The Secret Web Browser Monopoly | Fractional CISO, accessed May 2, 2025,
19

https://www.mehregansmart.com/en/content30.html
https://dev.to/avinashtechlvr/javascript-ecmascript-versions-m9n
https://cybercultural.com/p/1995-the-birth-of-javascript/
https://primalskill.blog/a-brief-history-of-javascript-frameworks
https://www.swhabitation.com/story/history-of-javascript
https://blog.risingstack.com/history-of-javascript-on-a-timeline/
https://auth0.com/blog/a-brief-history-of-javascript/
https://dev.to/codediodeio/the-weird-history-of-javascript-2bnb
https://developer.okta.com/blog/2020/12/04/25-years-javascript-java
https://en.wikipedia.org/wiki/Brendan_Eich
https://fireship.io/courses/javascript/intro-history/
https://www.youtube.com/watch?v=_UjYWgM8guY
https://www.visualcapitalist.com/cp/the-rise-and-fall-of-popular-web-browsers-since-1994/
https://www.visualcapitalist.com/cp/the-rise-and-fall-of-popular-web-browsers-since-1994/
https://www.visualcapitalist.com/internet-browser-market-share/
https://en.wikipedia.org/wiki/History_of_the_web_browser

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://fractionalciso.com/the-secret-web-browser-monopoly/
45. Web Browser Market Share In 2025: 85+ Browser Usage Statistics - Backlinko,

accessed May 2, 2025, https://backlinko.com/browser-market-share
46. Web Browser Market Share (1996-2019) : r/chromeos - Reddit, accessed May 2,

2025,
https://www.reddit.com/r/chromeos/comments/d3o08c/web_browser_market_sh
are_19962019/

47. Back to the Bad Old Days of the Web - Jorge Arango, accessed May 2, 2025,
https://jarango.com/2021/07/02/back-to-the-bad-old-days-of-the-web/

48. Usage share of web browsers - Wikipedia, accessed May 2, 2025,
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers

49. Desktop Browser Market Share (2000 - 2021) #Shorts - YouTube, accessed May
2, 2025, https://www.youtube.com/watch?v=k1Pdu4kAU2c

50. Web browsers market share for the last 28 years : r/Infographics - Reddit,
accessed May 2, 2025,
https://www.reddit.com/r/Infographics/comments/vb5e8l/web_browsers_market_
share_for_the_last_28_years/

51. 1997: Netscape Crossware vs the Windows Web | Cybercultural, accessed May 2,
2025,
https://cybercultural.com/p/1997-netscape-crossware-vs-the-windows-web/

52. The TC39 Process, accessed May 2, 2025, https://tc39.es/process-document/
53. ECMAScript Development Archive - Ecma International, accessed May 2, 2025,

https://ecma-international.org/ecmascript-development-archive/
54. TC39 - Ecma International, accessed May 2, 2025,

https://ecma-international.org/technical-committees/tc39/
55. tc39/proposals: Tracking ECMAScript Proposals - GitHub, accessed May 2, 2025,

https://github.com/tc39/proposals
56. GitHub - sudheerj/ECMAScript-features, accessed May 2, 2025,

https://github.com/sudheerj/ECMAScript-features
57. Stages - ECMAScript Proposals, accessed May 2, 2025,

https://www.proposals.es/stages
58. Start with ES3: A Key to Easing JavaScript Learning for Beginners - DEV

Community, accessed May 2, 2025,
https://dev.to/owens_akpede/start-with-es3-a-key-to-easing-javascript-learning-

20

https://fractionalciso.com/the-secret-web-browser-monopoly/
https://backlinko.com/browser-market-share
https://www.reddit.com/r/chromeos/comments/d3o08c/web_browser_market_share_19962019/
https://www.reddit.com/r/chromeos/comments/d3o08c/web_browser_market_share_19962019/
https://jarango.com/2021/07/02/back-to-the-bad-old-days-of-the-web/
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.youtube.com/watch?v=k1Pdu4kAU2c
https://www.reddit.com/r/Infographics/comments/vb5e8l/web_browsers_market_share_for_the_last_28_years/
https://www.reddit.com/r/Infographics/comments/vb5e8l/web_browsers_market_share_for_the_last_28_years/
https://cybercultural.com/p/1997-netscape-crossware-vs-the-windows-web/
https://tc39.es/process-document/
https://ecma-international.org/ecmascript-development-archive/
https://ecma-international.org/technical-committees/tc39/
https://github.com/tc39/proposals
https://github.com/sudheerj/ECMAScript-features
https://www.proposals.es/stages
https://dev.to/owens_akpede/start-with-es3-a-key-to-easing-javascript-learning-for-beginners-41m

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

for-beginners-41m
59. Control flow | web.dev, accessed May 2, 2025,

https://web.dev/learn/javascript/control-flow
60. Control flow and error handling - JavaScript - MDN Web Docs, accessed May 2,

2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_an
d_error_handling

61. var - JavaScript - MDN Web Docs - Mozilla, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/v
ar

62. Six Types of Scope in JavaScript: A Deep Dive for Developers - DEV Community,
accessed May 2, 2025,
https://dev.to/yugjadvani/five-types-of-scope-in-javascript-a-deep-dive-for-dev
elopers-285a

63. Variable Scope - JavaScript: The Definitive Guide, Fourth Edition [Book] - O'Reilly
Media, accessed May 2, 2025,
https://www.oreilly.com/library/view/javascript-the-definitive/0596000480/ch04s
03.html

64. 9. Variables and scoping - Exploring JS, accessed May 2, 2025,
https://exploringjs.com/es6/ch_variables.html

65. What is the scope of a function in Javascript/ECMAScript? - Stack Overflow,
accessed May 2, 2025,
https://stackoverflow.com/questions/235360/what-is-the-scope-of-a-function-in
-javascript-ecmascript

66. The History of JavaScript | Ample Blog, accessed May 2, 2025,
https://www.ample.co/blog/javascript-history

67. JavaScript Versions | GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/javascript-versions/

68. JavaScript data types and data structures - JavaScript - MDN Web Docs -
Mozilla, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Data_structures

69. JavaScript data types | Modern JS, accessed May 2, 2025,
https://www.modernjs.com/data-types.html

70. ECMAScript data types - EduTech Wiki, accessed May 2, 2025,
21

https://dev.to/owens_akpede/start-with-es3-a-key-to-easing-javascript-learning-for-beginners-41m
https://web.dev/learn/javascript/control-flow
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://dev.to/yugjadvani/five-types-of-scope-in-javascript-a-deep-dive-for-developers-285a
https://dev.to/yugjadvani/five-types-of-scope-in-javascript-a-deep-dive-for-developers-285a
https://www.oreilly.com/library/view/javascript-the-definitive/0596000480/ch04s03.html
https://www.oreilly.com/library/view/javascript-the-definitive/0596000480/ch04s03.html
https://exploringjs.com/es6/ch_variables.html
https://stackoverflow.com/questions/235360/what-is-the-scope-of-a-function-in-javascript-ecmascript
https://stackoverflow.com/questions/235360/what-is-the-scope-of-a-function-in-javascript-ecmascript
https://www.ample.co/blog/javascript-history
https://www.geeksforgeeks.org/javascript-versions/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Data_structures
https://www.modernjs.com/data-types.html

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://edutechwiki.unige.ch/en/ECMAScript_data_types
71. 6 ECMAScript Data Types and Values - TC39, accessed May 2, 2025,

https://tc39.es/ecma262/multipage/ecmascript-data-types-and-values.html
72. What is an ECMAScript "native object"? - Stack Overflow, accessed May 2, 2025,

https://stackoverflow.com/questions/8052578/what-is-an-ecmascript-native-obj
ect

73. Re: [Q] OOP in ExtendScript / ECMAscript 3 - Adobe Community - 14368315,
accessed May 2, 2025,
https://community.adobe.com/t5/illustrator-discussions/q-oop-in-extendscript-e
cmascript-3/m-p/14372645

74. 20 Fundamental Objects - ECMAScript® 2026 Language Specification, accessed
May 2, 2025, https://tc39.es/ecma262/multipage/fundamental-objects.html

75. Class-based and Object-based languages comparison (ECMAScript
Specification), accessed May 2, 2025,
https://stackoverflow.com/questions/34010495/class-based-and-object-based-l
anguages-comparison-ecmascript-specification

76. ECMAScript Operators - NetIQ Identity Manager - Administrator's Guide to
Designing the Identity Applications, accessed May 2, 2025,
https://www.netiq.com/documentation/identity-manager-49/identity_apps_desig
n/data/ecmascript-operators.html

77. 13 ECMAScript Language: Expressions - TC39, accessed May 2, 2025,
https://tc39.es/ecma262/multipage/ecmascript-language-expressions.html

78. Master ECMAScript: A comprehensive list with Real-World Examples -
ServiceNow, accessed May 2, 2025,
https://www.servicenow.com/community/developer-articles/master-ecmascript-
a-comprehensive-list-with-real-world-examples/ta-p/2420283

79. How javascript(ECMAScript) assignment operator works - Stack Overflow,
accessed May 2, 2025,
https://stackoverflow.com/questions/31311284/how-javascriptecmascript-assign
ment-operator-works

80. 4. Control Flow - Learning JavaScript, 3rd Edition [Book] - O'Reilly, accessed May
2, 2025,
https://www.oreilly.com/library/view/learning-javascript-3rd/9781491914892/ch04.
html

22

https://edutechwiki.unige.ch/en/ECMAScript_data_types
https://tc39.es/ecma262/multipage/ecmascript-data-types-and-values.html
https://stackoverflow.com/questions/8052578/what-is-an-ecmascript-native-object
https://stackoverflow.com/questions/8052578/what-is-an-ecmascript-native-object
https://community.adobe.com/t5/illustrator-discussions/q-oop-in-extendscript-ecmascript-3/m-p/14372645
https://community.adobe.com/t5/illustrator-discussions/q-oop-in-extendscript-ecmascript-3/m-p/14372645
https://tc39.es/ecma262/multipage/fundamental-objects.html
https://stackoverflow.com/questions/34010495/class-based-and-object-based-languages-comparison-ecmascript-specification
https://stackoverflow.com/questions/34010495/class-based-and-object-based-languages-comparison-ecmascript-specification
https://www.netiq.com/documentation/identity-manager-49/identity_apps_design/data/ecmascript-operators.html
https://www.netiq.com/documentation/identity-manager-49/identity_apps_design/data/ecmascript-operators.html
https://tc39.es/ecma262/multipage/ecmascript-language-expressions.html
https://www.servicenow.com/community/developer-articles/master-ecmascript-a-comprehensive-list-with-real-world-examples/ta-p/2420283
https://www.servicenow.com/community/developer-articles/master-ecmascript-a-comprehensive-list-with-real-world-examples/ta-p/2420283
https://stackoverflow.com/questions/31311284/how-javascriptecmascript-assignment-operator-works
https://stackoverflow.com/questions/31311284/how-javascriptecmascript-assignment-operator-works
https://www.oreilly.com/library/view/learning-javascript-3rd/9781491914892/ch04.html
https://www.oreilly.com/library/view/learning-javascript-3rd/9781491914892/ch04.html

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

81. Regular expressions - JavaScript - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressi
ons

82. RegExp - JavaScript - MDN Web Docs - Mozilla, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obje
cts/RegExp

83. Modified ECMAScript regular expression grammar - cppreference.com - C++
Reference, accessed May 2, 2025,
https://en.cppreference.com/w/cpp/regex/ecmascript

84. ECMAScript regular expressions are getting better! - Mathias Bynens, accessed
May 2, 2025, https://mathiasbynens.be/notes/es-regexp-proposals

85. try...catch - JavaScript - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/t
ry...catch

86. Error handling, "try...catch" - The Modern JavaScript Tutorial, accessed May 2,
2025, https://javascript.info/try-catch

87. JavaScript Exceptions - try...catch...finally - Codeguage, accessed May 2, 2025,
https://www.codeguage.com/courses/js/exceptions-basics

88. Javascript error handling with try .. catch .. finally - Stack Overflow, accessed May
2, 2025,
https://stackoverflow.com/questions/286297/javascript-error-handling-with-try-c
atch-finally

89. Object prototypes - Learn web development | MDN, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Ad
vanced_JavaScript_objects/Object_prototypes

90. Inheritance and the prototype chain - JavaScript - MDN Web Docs, accessed May
2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_
the_prototype_chain

91. ECMA-262-3 in detail. Chapter 7.1. OOP: The general theory. - Dmitry Soshnikov,
accessed May 2, 2025,
http://dmitrysoshnikov.com/ecmascript/chapter-7-1-oop-general-theory/

92. Understanding JavaScript Prototypes: A Key to Mastering OOP - DEV
Community, accessed May 2, 2025,

23

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://en.cppreference.com/w/cpp/regex/ecmascript
https://mathiasbynens.be/notes/es-regexp-proposals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
https://javascript.info/try-catch
https://www.codeguage.com/courses/js/exceptions-basics
https://stackoverflow.com/questions/286297/javascript-error-handling-with-try-catch-finally
https://stackoverflow.com/questions/286297/javascript-error-handling-with-try-catch-finally
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Advanced_JavaScript_objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Advanced_JavaScript_objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
http://dmitrysoshnikov.com/ecmascript/chapter-7-1-oop-general-theory/

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://dev.to/jps27cse/understanding-javascript-prototypes-a-key-to-mastering
-oop-1j1b

93. Is the following explanation of `prototypes` in Javascript valid? - Stack Overflow,
accessed May 2, 2025,
https://stackoverflow.com/questions/70549067/is-the-following-explanation-of-p
rototypes-in-javascript-valid

94. ECMAScript® 2026 Language Specification - TC39, accessed May 2, 2025,
https://tc39.es/ecma262/

95. ECMAScript Language Specification - ECMA-262 Edition 5.1, accessed May 2,
2025, https://262.ecma-international.org/5.1/

96. ECMAScript 6 Features - GitHub Pages, accessed May 2, 2025,
https://drstearns.github.io/tutorials/es6/

97. A gist which shows the difference between the ES5 and ES6 classes with a simple
example using inheritance! : r/javascript - Reddit, accessed May 2, 2025,
https://www.reddit.com/r/javascript/comments/cuyuqf/a_gist_which_shows_the_d
ifference_between_the_es5/

98. this - JavaScript | MDN - MDN Web Docs - Mozilla, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/th
is

99. JavaScript this Keyword | GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/javascript-this-keyword/

100. ECMA-262-3 in detail. Chapter 3. This. - Dmitry Soshnikov, accessed May 2,
2025, http://dmitrysoshnikov.com/ecmascript/chapter-3-this/

101. javascript - How does the "this" keyword work, and when should it be used? -
Stack Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/3127429/how-does-the-this-keyword-work-
and-when-should-it-be-used

102. Cannot understand "this" keyword : r/learnjavascript - Reddit, accessed May 2,
2025,
https://www.reddit.com/r/learnjavascript/comments/zoxb19/cannot_understand_t
his_keyword/

103. js: one confusing point about 'this' keyword usage between ES5 and ES6 -
Stack Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/43670878/js-one-confusing-point-about-thi

24

https://dev.to/jps27cse/understanding-javascript-prototypes-a-key-to-mastering-oop-1j1b
https://dev.to/jps27cse/understanding-javascript-prototypes-a-key-to-mastering-oop-1j1b
https://stackoverflow.com/questions/70549067/is-the-following-explanation-of-prototypes-in-javascript-valid
https://stackoverflow.com/questions/70549067/is-the-following-explanation-of-prototypes-in-javascript-valid
https://tc39.es/ecma262/
https://262.ecma-international.org/5.1/
https://drstearns.github.io/tutorials/es6/
https://www.reddit.com/r/javascript/comments/cuyuqf/a_gist_which_shows_the_difference_between_the_es5/
https://www.reddit.com/r/javascript/comments/cuyuqf/a_gist_which_shows_the_difference_between_the_es5/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://www.geeksforgeeks.org/javascript-this-keyword/
http://dmitrysoshnikov.com/ecmascript/chapter-3-this/
https://stackoverflow.com/questions/3127429/how-does-the-this-keyword-work-and-when-should-it-be-used
https://stackoverflow.com/questions/3127429/how-does-the-this-keyword-work-and-when-should-it-be-used
https://www.reddit.com/r/learnjavascript/comments/zoxb19/cannot_understand_this_keyword/
https://www.reddit.com/r/learnjavascript/comments/zoxb19/cannot_understand_this_keyword/
https://stackoverflow.com/questions/43670878/js-one-confusing-point-about-this-keyword-usage-between-es5-and-es6

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

s-keyword-usage-between-es5-and-es6
104. JavaScript this Keyword Explained in 3 Minutes : r/learnjavascript - Reddit,

accessed May 2, 2025,
https://www.reddit.com/r/learnjavascript/comments/edppa1/javascript_this_keyw
ord_explained_in_3_minutes/

105. The History of Simulated Classes in JavaScript - WebReflection, accessed May
2, 2025,
https://www.webreflection.co.uk/blog/2015/11/07/the-history-of-simulated-classe
s-in-javascript

106. Array Methods - JavaScript: The Definitive Guide, 6th Edition [Book] - O'Reilly
Media, accessed May 2, 2025,
https://www.oreilly.com/library/view/javascript-the-definitive/9781449393854/ch0
7s08.html

107. A small utility to create ECMAScript `Array`s with members of a single type. -
Reddit, accessed May 2, 2025,
https://www.reddit.com/r/javascript/comments/1i6sqg7/a_small_utility_to_create_e
cmascript_arrays_with/

108. Array - JavaScript - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obje
cts/Array

109. JavaScript New Arrays Methods: ECMAScript 2023 - DEV Community,
accessed May 2, 2025,
https://dev.to/abidullah786/javascript-new-arrays-methods-ecmascript-2023-1c3
1

110. Functions - JavaScript - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions

111. ECMA-262-3 in detail. Chapter 5. Functions. - Dmitry Soshnikov, accessed May
2, 2025, http://dmitrysoshnikov.com/ecmascript/chapter-5-functions/

112. How to figure out what Javascript methods/features/etc are available in
ECMAscript 3.0, accessed May 2, 2025,
https://stackoverflow.com/questions/65961661/how-to-figure-out-what-javascrip
t-methods-features-etc-are-available-in-ecmascri

113. Closures - JavaScript - MDN Web Docs, accessed May 2, 2025,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures

25

https://stackoverflow.com/questions/43670878/js-one-confusing-point-about-this-keyword-usage-between-es5-and-es6
https://www.reddit.com/r/learnjavascript/comments/edppa1/javascript_this_keyword_explained_in_3_minutes/
https://www.reddit.com/r/learnjavascript/comments/edppa1/javascript_this_keyword_explained_in_3_minutes/
https://www.webreflection.co.uk/blog/2015/11/07/the-history-of-simulated-classes-in-javascript
https://www.webreflection.co.uk/blog/2015/11/07/the-history-of-simulated-classes-in-javascript
https://www.oreilly.com/library/view/javascript-the-definitive/9781449393854/ch07s08.html
https://www.oreilly.com/library/view/javascript-the-definitive/9781449393854/ch07s08.html
https://www.reddit.com/r/javascript/comments/1i6sqg7/a_small_utility_to_create_ecmascript_arrays_with/
https://www.reddit.com/r/javascript/comments/1i6sqg7/a_small_utility_to_create_ecmascript_arrays_with/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://dev.to/abidullah786/javascript-new-arrays-methods-ecmascript-2023-1c31
https://dev.to/abidullah786/javascript-new-arrays-methods-ecmascript-2023-1c31
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
http://dmitrysoshnikov.com/ecmascript/chapter-5-functions/
https://stackoverflow.com/questions/65961661/how-to-figure-out-what-javascript-methods-features-etc-are-available-in-ecmascri
https://stackoverflow.com/questions/65961661/how-to-figure-out-what-javascript-methods-features-etc-are-available-in-ecmascri
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

114. ECMA-262-3 in detail. Chapter 6. Closures. - Dmitry Soshnikov, accessed May
2, 2025, http://dmitrysoshnikov.com/ecmascript/chapter-6-closures/

115. ECMASCRIPT Closures - What is Evaluation block in JavaScript? - Stack
Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/75247311/ecmascript-closures-what-is-eval
uation-block-in-javascript

116. Mastering Closures in JavaScript: A Comprehensive Guide - DEV Community,
accessed May 2, 2025,
https://dev.to/imranabdulmalik/mastering-closures-in-javascript-a-comprehensiv
e-guide-4ja8

117. JavaScript closures in 17 minutes. With code and practical examples. :
r/learnjavascript - Reddit, accessed May 2, 2025,
https://www.reddit.com/r/learnjavascript/comments/qzhpcy/javascript_closures_i
n_17_minutes_with_code_and/

118. [AskJS] What is your opinion on using Closures instead of Object
Prototype/Classes for OOP? : r/javascript - Reddit, accessed May 2, 2025,
https://www.reddit.com/r/javascript/comments/dr58q3/askjs_what_is_your_opinio
n_on_using_closures/

119. JavaScript Closures - Using the ECMA Spec, please explain how the closure is
created and maintained - Stack Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/15117687/javascript-closures-using-the-ecm
a-spec-please-explain-how-the-closure-is-cre

120. ES5, ES6, ES7, ES8, ES9: What's new in each Version of JavaScript -
OdinSchool, accessed May 2, 2025,
https://www.odinschool.com/blog/programming/java-script-versions

121. JavaScript Versions: How JavaScript has changed over the years -
Educative.io, accessed May 2, 2025,
https://www.educative.io/blog/javascript-versions-history

122. Difference between ES5 and ES6 - GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/difference-between-es5-and-es6/

123. JavaScript ES5 vs ES6 Major Updates and Code Examples - AST Consulting,
accessed May 2, 2025, https://astconsulting.in/java-script/javascript-es5-vs-es6

124. JavaScript ES5 Features - Tutorialspoint, accessed May 2, 2025,
https://www.tutorialspoint.com/javascript/javascript_es5.htm

26

http://dmitrysoshnikov.com/ecmascript/chapter-6-closures/
https://stackoverflow.com/questions/75247311/ecmascript-closures-what-is-evaluation-block-in-javascript
https://stackoverflow.com/questions/75247311/ecmascript-closures-what-is-evaluation-block-in-javascript
https://dev.to/imranabdulmalik/mastering-closures-in-javascript-a-comprehensive-guide-4ja8
https://dev.to/imranabdulmalik/mastering-closures-in-javascript-a-comprehensive-guide-4ja8
https://www.reddit.com/r/learnjavascript/comments/qzhpcy/javascript_closures_in_17_minutes_with_code_and/
https://www.reddit.com/r/learnjavascript/comments/qzhpcy/javascript_closures_in_17_minutes_with_code_and/
https://www.reddit.com/r/javascript/comments/dr58q3/askjs_what_is_your_opinion_on_using_closures/
https://www.reddit.com/r/javascript/comments/dr58q3/askjs_what_is_your_opinion_on_using_closures/
https://stackoverflow.com/questions/15117687/javascript-closures-using-the-ecma-spec-please-explain-how-the-closure-is-cre
https://stackoverflow.com/questions/15117687/javascript-closures-using-the-ecma-spec-please-explain-how-the-closure-is-cre
https://www.odinschool.com/blog/programming/java-script-versions
https://www.educative.io/blog/javascript-versions-history
https://www.geeksforgeeks.org/difference-between-es5-and-es6/
https://astconsulting.in/java-script/javascript-es5-vs-es6
https://www.tutorialspoint.com/javascript/javascript_es5.htm

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

125. New features in ES5 - Manh Phan, accessed May 2, 2025,
https://ducmanhphan.github.io/2019-02-28-New-features-in-ES5/

126. JavaScript ES5 (JS 2009) - GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/javascript-es5-js-2009/

127. The Evolution of JavaScript: ES5 to ES2022 - DEV Community, accessed May 2,
2025, https://dev.to/rowsanali/the-evolution-of-javascript-es5-to-es2022-49p9

128. ES5 vs ES6 in JavaScript. 14 big changes⚠ - DEV Community, accessed May
2, 2025,
https://dev.to/diwakarkashyap/es5-vs-es6-in-javascript-14-big-changes-ple

129. How ReactJS ES6 syntax is different compared to ES5 - GeeksforGeeks,
accessed May 2, 2025,
https://www.geeksforgeeks.org/how-reactjs-es6-syntax-is-different-compared-t
o-es5/

130. Differences between ES5 and ES6 - DEV Community, accessed May 2, 2025,
https://dev.to/dhanushaperera07/differences-between-es5-and-es6-24k0

131. ES5 vs ES6 - Front-End Engineering Curriculum - Turing School of Software
and Design, accessed May 2, 2025,
https://frontend.turing.edu/lessons/module-2/es5-vs-es6.html

132. Introduction to ES6 | GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/introduction-to-es6/

133. ES6 to ES15 - Features list | JS - DEV Community, accessed May 2, 2025,
https://dev.to/shubhamtiwari909/es6-to-es14-features-list-57am

134. Top 10 Features of ES6: A Comprehensive Guide to Modern JavaScript -
Board Infinity, accessed May 2, 2025,
https://www.boardinfinity.com/blog/top-10-features-of-es6/

135. lukehoban/es6features: Overview of ECMAScript 6 features - GitHub,
accessed May 2, 2025, https://github.com/lukehoban/es6features

136. A Guide to Exploring JavaScript ES6 Features - Scribbler.live, accessed May 2,
2025, https://scribbler.live/2024/04/12/ES6-Features-with-Examples.html

137. Introduction to JavaScript | GeeksforGeeks, accessed May 2, 2025,
https://www.geeksforgeeks.org/introduction-to-javascript/

138. How is Javascript used in web development? : r/webdev - Reddit, accessed
May 2, 2025,
https://www.reddit.com/r/webdev/comments/3gkrf4/how_is_ javascript_used_in_

27

https://ducmanhphan.github.io/2019-02-28-New-features-in-ES5/
https://www.geeksforgeeks.org/javascript-es5-js-2009/
https://dev.to/rowsanali/the-evolution-of-javascript-es5-to-es2022-49p9
https://dev.to/diwakarkashyap/es5-vs-es6-in-javascript-14-big-changes-ple
https://www.geeksforgeeks.org/how-reactjs-es6-syntax-is-different-compared-to-es5/
https://www.geeksforgeeks.org/how-reactjs-es6-syntax-is-different-compared-to-es5/
https://dev.to/dhanushaperera07/differences-between-es5-and-es6-24k0
https://frontend.turing.edu/lessons/module-2/es5-vs-es6.html
https://www.geeksforgeeks.org/introduction-to-es6/
https://dev.to/shubhamtiwari909/es6-to-es14-features-list-57am
https://www.boardinfinity.com/blog/top-10-features-of-es6/
https://github.com/lukehoban/es6features
https://scribbler.live/2024/04/12/ES6-Features-with-Examples.html
https://www.geeksforgeeks.org/introduction-to-javascript/
https://www.reddit.com/r/webdev/comments/3gkrf4/how_is_javascript_used_in_web_development/

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

web_development/
139. What is the role of JavaScript in modern web development? - Nucamp Coding

Bootcamp, accessed May 2, 2025,
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-dev
elopment-what-is-the-role-of-javascript-in-modern-web-development

140. What kinda things can you do with Js? : r/learnjavascript - Reddit, accessed
May 2, 2025,
https://www.reddit.com/r/learnjavascript/comments/ejw5zn/what_kinda_things_ca
n_you_do_with_js/

141. Using JavaScript Next Features in an ES3 Enterprise World - Telerik Blogs,
accessed May 2, 2025,
https://www.telerik.com/blogs/using-javascript-next-features-es3-enterprise-wor
ld

142. [AskJS] I asked ChatGPT if I can still code in ES3 (ECMA Script 1) : r/javascript -
Reddit, accessed May 2, 2025,
https://www.reddit.com/r/javascript/comments/1ftppdl/askjs_i_asked_chatgpt_if_i
_can_still_code_in_es3/

143. javascript - How Client Side Programming Works - Software Engineering Stack
Exchange, accessed May 2, 2025,
https://softwareengineering.stackexchange.com/questions/205851/how-client-si
de-programming-works

144. Re-Evolution of JavaScript | Simply Technologies, accessed May 2, 2025,
https://www.simplytechnologies.net/reevolution-of-javascript

145. History of Javascript | ecmascript - YouTube, accessed May 2, 2025,
https://www.youtube.com/watch?v=NQUjEo9iqfo

146. Node.js server-side javascript process consuming too much memory,
accessed May 2, 2025,
https://developercommunity.visualstudio.com/content/problem/27033/nodejs-ser
ver-side-javascript-process-consuming-to.html

147. Rendering javascript at the server side level. A good or bad idea? - Stack
Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/2847176/rendering-javascript-at-the-server-
side-level-a-good-or-bad-idea

148. How to list object properties on server side scripting? - ServiceNow, accessed
28

https://www.reddit.com/r/webdev/comments/3gkrf4/how_is_javascript_used_in_web_development/
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-development-what-is-the-role-of-javascript-in-modern-web-development
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-development-what-is-the-role-of-javascript-in-modern-web-development
https://www.reddit.com/r/learnjavascript/comments/ejw5zn/what_kinda_things_can_you_do_with_js/
https://www.reddit.com/r/learnjavascript/comments/ejw5zn/what_kinda_things_can_you_do_with_js/
https://www.telerik.com/blogs/using-javascript-next-features-es3-enterprise-world
https://www.telerik.com/blogs/using-javascript-next-features-es3-enterprise-world
https://www.reddit.com/r/javascript/comments/1ftppdl/askjs_i_asked_chatgpt_if_i_can_still_code_in_es3/
https://www.reddit.com/r/javascript/comments/1ftppdl/askjs_i_asked_chatgpt_if_i_can_still_code_in_es3/
https://softwareengineering.stackexchange.com/questions/205851/how-client-side-programming-works
https://softwareengineering.stackexchange.com/questions/205851/how-client-side-programming-works
https://www.simplytechnologies.net/reevolution-of-javascript
https://www.youtube.com/watch?v=NQUjEo9iqfo
https://developercommunity.visualstudio.com/content/problem/27033/nodejs-server-side-javascript-process-consuming-to.html
https://developercommunity.visualstudio.com/content/problem/27033/nodejs-server-side-javascript-process-consuming-to.html
https://stackoverflow.com/questions/2847176/rendering-javascript-at-the-server-side-level-a-good-or-bad-idea
https://stackoverflow.com/questions/2847176/rendering-javascript-at-the-server-side-level-a-good-or-bad-idea

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

May 2, 2025,
https://www.servicenow.com/community/service-management-forum/how-to-lis
t-object-properties-on-server-side-scripting/m-p/336412

149. Which Edition of ECMA-262 Does Google Apps Script Support? - Stack
Overflow, accessed May 2, 2025,
https://stackoverflow.com/questions/17252409/which-edition-of-ecma-262-does
-google-apps-script-support

150. A Brief History and Evolution of JavaScript - Zipy.ai, accessed May 2, 2025,
https://www.zipy.ai/blog/brief-history-and-evolution-of-javascript

151. HTML to Svelte 4: The Evolution of Web Development Frameworks -
Codesphere, accessed May 2, 2025,
https://codesphere.com/articles/the-evolution-of-web-development-framework
s

152. The Complete ECMAScript 2015-2019 Guide - Flavio Copes, accessed May 2,
2025, https://flaviocopes.com/ecmascript/

153. 3. ES5, ES6 and their features | Javascript tutorial for beginners - YouTube,
accessed May 2, 2025, https://www.youtube.com/watch?v=iEZdKWHl5bA

154. A Brief History of JavaScript - Brendan Eich, accessed May 2, 2025,
https://brendaneich.com/2010/07/a-brief-history-of-javascript/

155. A On the design of the ECMAScript Reflection API - Google Research,
accessed May 2, 2025, https://research.google.com/pubs/archive/37741.pdf

156. Development and Operating Platforms - ES3, accessed May 2, 2025,
https://www.es3inc.com/mars-solver/development-and-operating-platforms/

157. ES3, accessed May 2, 2025, https://www.es3inc.com/
158. ELI5: The meaning and differences of es5 and es6 in Javascript. : r/webdev -

Reddit, accessed May 2, 2025,
https://www.reddit.com/r/webdev/comments/106ipom/eli5_the_meaning_and_diff
erences_of_es5_and_es6/

159. Using ES6 features with all browsers support - Stack Overflow, accessed May
2, 2025,
https://stackoverflow.com/questions/34205167/using-es6-features-with-all-brow
sers-support

160. Target different Javascript versions with TypeScript - Stack Overflow,
accessed May 2, 2025,

29

https://www.servicenow.com/community/service-management-forum/how-to-list-object-properties-on-server-side-scripting/m-p/336412
https://www.servicenow.com/community/service-management-forum/how-to-list-object-properties-on-server-side-scripting/m-p/336412
https://stackoverflow.com/questions/17252409/which-edition-of-ecma-262-does-google-apps-script-support
https://stackoverflow.com/questions/17252409/which-edition-of-ecma-262-does-google-apps-script-support
https://www.zipy.ai/blog/brief-history-and-evolution-of-javascript
https://codesphere.com/articles/the-evolution-of-web-development-frameworks
https://codesphere.com/articles/the-evolution-of-web-development-frameworks
https://flaviocopes.com/ecmascript/
https://www.youtube.com/watch?v=iEZdKWHl5bA
https://brendaneich.com/2010/07/a-brief-history-of-javascript/
https://research.google.com/pubs/archive/37741.pdf
https://www.es3inc.com/mars-solver/development-and-operating-platforms/
https://www.es3inc.com/
https://www.reddit.com/r/webdev/comments/106ipom/eli5_the_meaning_and_differences_of_es5_and_es6/
https://www.reddit.com/r/webdev/comments/106ipom/eli5_the_meaning_and_differences_of_es5_and_es6/
https://stackoverflow.com/questions/34205167/using-es6-features-with-all-browsers-support
https://stackoverflow.com/questions/34205167/using-es6-features-with-all-browsers-support

Advanced Research Paper ES3

ECMAscript 3

Date: March 28 2025
Revision: v8

https://stackoverflow.com/questions/38951661/target-different-javascript-version
s-with-typescript

161. Which ECMA version should I aim for? : r/learnjavascript - Reddit, accessed
May 2, 2025,
https://www.reddit.com/r/learnjavascript/comments/1huwwqf/which_ecma_versio
n_should_i_aim_for/

162. ES7, ES8, ES9, ES10, ES11 Browser support - Stack Overflow, accessed May 2,
2025,
https://stackoverflow.com/questions/61835971/es7-es8-es9-es10-es11-browser-s
upport

163. Exploring Advanced JavaScript Features: A Deep Dive into ECMAScript 2023
Updates, accessed May 2, 2025,
https://blog.greenroots.info/exploring-advanced-javascript-features-ecmascript-
2023

30

https://stackoverflow.com/questions/38951661/target-different-javascript-versions-with-typescript
https://stackoverflow.com/questions/38951661/target-different-javascript-versions-with-typescript
https://www.reddit.com/r/learnjavascript/comments/1huwwqf/which_ecma_version_should_i_aim_for/
https://www.reddit.com/r/learnjavascript/comments/1huwwqf/which_ecma_version_should_i_aim_for/
https://stackoverflow.com/questions/61835971/es7-es8-es9-es10-es11-browser-support
https://stackoverflow.com/questions/61835971/es7-es8-es9-es10-es11-browser-support
https://blog.greenroots.info/exploring-advanced-javascript-features-ecmascript-2023
https://blog.greenroots.info/exploring-advanced-javascript-features-ecmascript-2023

	ECMAScript 3 or ES3:
	 A Comprehensive Analysis of its Definition, History, Features, and Legacy
	1. Introduction: Understanding ECMAScript 3
	2. The Genesis of ES3: Historical Context
	3. Dissecting ES3: Key Features and Syntax
	4. ES3 Compared: Evolution to ES5 and ES6
	5. Applications in Practice: Use Cases of ES3
	6. The Limitations of ES3: Why Modern JavaScript Evolved
	7. ES3 in the Present: Relevance and Usage Today
	8. Navigating the Past: Security Considerations with ES3
	9. Conclusion: Reflecting on ES3's Legacy
	Works cited

